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Abstract

This study presents a model in which firms invest in R&D to generate innovations that increase

their underlying profitability and invest in physical capital to produce output. Estimating the

model using a method of moments approach reveals that R&D expenditures contribute signifi-

cantly to profits and firm value. The model also captures variation in R&D intensity, profits and

firm value across R&D-intensive industries. Counterfactual experiments suggest that changes in

distribution of firms in the economy may, over the long-run, mitigate tax policy changes designed

to encourage R&D expenditures.
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1 Introduction

Following the seminal article by Griliches (1979), the empirical research and development (R&D)

literature has yielded many insights about the importance of R&D expenditures in understanding

both firm behavior and overall economic growth. Although the literature acknowledges limitations

of production-function-based regressions—see Hall and Mairesse (1995) and Griliches (2000)—it

remains the main approach used in empirical R&D studies. Recently, a burgeoning literature

has developed that examines the role of R&D using new models (for examples, see Xu (2008);

Aw, Roberts, and Xu (2011); Bloom, Schankerman, and van Reenen (2013); and Doraszelski and

Jaumandreu (2013)). This paper adds to the literature by estimating a model where firms invest

in R&D in order to generate innovations that increase profitability and invest in physical capital

to produce output. The estimated model is used to evaluate the response of firms to an increase

in the R&D tax credit, both in the short-run and across steady states.

The underlying model used in the estimation in this paper builds on the endogenous growth

literature, which emphasizes the role of R&D in generating innovations and economic growth.1

Firms invest in R&D to increase the probability of innovations, which lead to increases in the

underlying profitability process that fade over time. Firms produce output using capital and labor

and, as such, respond to successful innovations with new physical investment. Thus, the model

takes into account both the impact of R&D expenditures on profitability as well as the interaction

between R&D expenditures and physical investment (see Lach and Schankerman (1989)). One

additional feature of the model is that the innovation probability is a function of the accumulated

R&D stock, implying that current R&D expenditures influence the probability of innovations in

future years.

The model is estimated using simulated method of moments (see Gourieroux, Monfort, and

Renault (1993)). This approach involves matching means, variances, and autocorrelations of and

correlations between variables of interest from the data with the corresponding model counterparts.

The approach sidesteps difficulties caused by the fact that the model’s first-order conditions are

not expressed in terms of observable variables. One benefit of this approach is that it yields a joint

estimate of all the model parameters of interest.

The data set used in the estimation is derived from the Compustat database. The sample

is restricted to nonfinancial firms that consistently report R&D expenses. The main variables

of interest in the estimation are R&D intensity, measured as R&D expenses divided by sales,

1See Romer (1990), Grossman and Helpman (1991), and Aghion and Howitt (1992).
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Tobin’s q, measured as the market value of the firm divided by the replacement cost of capital,

and profitability, measured as operating income divided by capital. An examination of the data

indicates that firms in the sample have, on average, high R&D intensities. These firms also have

high Tobin’s q values that cannot be justified solely based on investment frictions, suggesting that

R&D investment plays in important role in understanding their profits and firm values.

The estimates reveal that R&D expenditures have an economically and statistically significant

impact on profits and firm value. The findings imply that firms obtain jumps in profitability

from successful innovations in most periods. On average, firms expect their R&D expenditures

to generate about an 18.5% increase in the underlying profitability process. These profitability

increases are also quite persistent. The large persistent expected profitability increases arising from

R&D expenditures enable the model to match the high levels of R&D expenditures observed in the

data as well as the high Tobin’s q levels. In addition, the model captures the low correlation between

Tobin’s q and investment observed in the data. Also, the estimation yields an obsolescence rate for

R&D stocks of about 32%, somewhat higher than the value of 15% typically used in the literature

(see Griliches and Mairesse (1984)). An extension of the model that allows for R&D expenditures

to influence both the success rate of innovations and the increase in profitability arising from an

innovation generates broadly similar findings. Firms expect innovations to lead to about a 20%

increase in profitability, and the estimated obsolescence rate of R&D equals 23%.

Estimating the model on selected R&D-intensive industries—chosen based on four-digit SIC

codes—demonstrates that the model successfully captures variations in R&D intensity, profitability

and firm value across these industries. The results from each of these industries reveal that while

firms face uncertainty in the outcomes from their R&D expenditures, they can realize economically

meaningful increases in profits from innovations. This estimation also highlights the importance of

the non-R&D-related parameters, with both the curvature of the profit function and the persistence

of shocks to the profitability process influencing firms’ R&D expenditures.

The study carries out a number of related analysis to address identification concerns regarding

the R&D-related parameters. An examination of the GMM-objective function minimized in the

estimation reveals that the function is steeply sloped at the estimated parameter values, enabling

identification. This steep slope arises from the fact that the moments chosen in the study are

sensitive to changes in the underlying parameters. Finally, the estimation method is able to recover

the underlying parameter values when applied to data obtained from simulating the model.

The structural estimation approach enables a counterfactual experiment on an increase in the
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tax subsidy provided to R&D expenditures. This experiment is motivated by recent policy dis-

cussions on providing further support to R&D expenditures. The model enables this analysis to

be carried out both in the short-run and across steady states. In comparison, a regression-based

approach typically only identifies the short-run effect of a tax policy change. The counterfactual

increase in the R&D tax subsidy leads to an overall increase in R&D expenditures and a small in-

crease in the success rate of innovations. The estimated elasticities imply that a $1 tax subsidy to

R&D expenses generates about $1 more of R&D expenses, similar to the estimates reported by Hall

and van Reenen (2000) and Bloom, Griffith, and van Reenen (2002). The analysis also reveals that

the beneficial effect of the increased R&D tax subsidy over the long-run may be somewhat smaller

than the immediate short-run effect, as the increased R&D expenditures changes the profitability

distribution, and therefore R&D expenditures, of firms in the economy.

This study is organized as follows. Section 2 details the model and derives the optimal policy

function for R&D. Section 3 discusses the data and the estimation approach. Section 4 presents

the results from the various estimations. Section 5 addresses model identification concerns. Section

6 evaluates the policy experiment within the context of the model, and Section 7 concludes.

2 Model

The model economy consists of a large number of heterogeneous firms. The firms can invest in a

physical capital stock, K, and an R&D stock, S. The firms face exogenous profitability shocks as

well as endogenous jumps in profitability that arise from their R&D investment. Firms return any

cash remaining after investment costs to shareholders as dividends. The objective of each firm is

to maximize the present value of dividends.

2.1 Physical investment and profits

The output of the ith firm follows a constant returns to scale Cobb–Douglas specification with

Y (Ki, xi) = xiK
α
i L

1−α
i ,

where xi denotes the firm’s output productivity level and α denotes the elasticity of output with

respect to capital (time subscripts omitted). The firm faces a downward-sloping demand curve with
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price per unit of output,

Pi = diY
−ν
i ,

where di denotes a demand shift parameter and ν equals the inverse price elasticity of demand.

Thus, sales are given by

PiYi = diY
1−ν
i .

These assumptions correspond to a monopolistic competition setting where each firm possesses a

degree of pricing power. Assume flexible labor markets, a deterministic wage process, and a per

period fixed cost of operations, fc. After substituting in the optimal labor input, the profits of the

firm can be written as

Π(Ki, zi) = ziK
θ
i − fc, (1)

where the composite profitability level zi inherits the properties of xi and di. The curvature of the

profit function is given by the following:

θ =
α(1 − ν)

ν + α(1 − ν)
. (2)

The subsequent analysis employs the above profit function. The firm spends its profits on physical

investment and R&D expenditures and returns any cash left as a dividend to shareholders, with

negative dividends indicating a share issuance.

Investment or disinvestment of physical capital incurs a quadratic adjustment cost, b
I2
i

2Ki
, and

firms can disinvest.2 Recent studies such as Cooper and Haltiwanger (2006) emphasize the role

of non-convex adjustment costs in investment; however, this evidence comes from plant-level data.

In contrast, Eberly, Rebelo, and Vincent (2008) demonstrate that the quadratic adjustment cost

specification fits investment data quite well at the firm level, as the data show little evidence of

non-convex adjustment costs when investment is aggregated to the firm level. The capital stock of

the firm in the next period is given by

K ′

i = Ki(1− δ) + Ii,

where δ denotes the depreciation rate and Ii equals investment.

2The model does not include any irreversibility of selling physical capital as in Abel and Eberly (1994) or any
costs of external finance as in Gomes (2001) and Brown, Fazzari, and Petersen (2009).
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2.2 R&D investment

In addition to physical investment, firms also invest in R&D. The R&D stock of the firm does not

directly impact the production function as in Griliches (1979) and others. Instead, the R&D stock

stochastically affects the transition of profitability across periods. The model views R&D stocks as

measuring the potential for future innovations rather than measuring the stock of ideas applicable

for production. When a firm’s R&D activity is successful, the firm realizes a profitability jump in

the next period.3 If it was unsuccessful, the firm will not realize a jump in profitability. Thus,

innovations reflect discoveries by firms that lead to an increased profitability of the firm’s capital

stock.4 A fraction of the R&D stock becomes obsolete each period, reflecting the conclusion or

abandonment of R&D projects. The model attempts to capture the inherently uncertain nature of

the innovation process through this mechanism, as a firm would realize a negative return from its

R&D investment in a period in which it failed to innovate.

Denote the accumulated R&D stock of the firm at the end of each period by S′

i. Let Ri equal

the investment in R&D activity. The law of motion for Si is given by

S′

i = Si(1− γ) +Ri, (3)

where γ denotes the rate at which R&D stocks become obsolete. There are no additional costs of

R&D investment, and the only constraint on it is that the R&D stock, S′

i, remains non-negative.

This specification assumes that firms can sell their R&D stock for its residual value if necessary.

The reversibility assumption is supported by anecdotal evidence of firms selling partially developed

products to other firms, particularly in the pharmaceutical sector. Although the assumption of

no adjustment costs of R&D investment is debatable, the literature typically does not assume

additional adjustment costs for R&D investment (see Doraszelski and Jaumandreu (2013)).

One feature of the modeling framework is that R&D stocks determine the probability of in-

novation instead of R&D expenditure flows, as in Akcigit (2009); Aw, Roberts, and Xu (2011);

and Doraszelski and Jaumandreu (2013). The R&D stock-based approach employed in the model

generalizes the flow-based approach as it allows for R&D expenditures to impact the probability of

profit increases not only in the next period, but also in future periods. Put differently, the above

3Other papers that provide a similar treatment of the innovation process include Thompson (2001); Klette and
Kortum (2004); and Aghion, Bloom, Blundell, Griffith, and Howitt (2005).

4The vintage capital models of Greenwood and Jovanovic (1999) and Hobijn and Jovanovic (2001) emphasize
macro level technological revolutions that have different impacts on the value of current and future capital.
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specification nests one based solely on R&D flows, as S′

i = Ri when γ = 1. Generalizing the model

to allow for R&D stocks to influence innovation does come at the cost of introducing an additional

parameter, γ, that needs to be estimated.

Let ji denote a binary variable that equals 1 if the firm successfully innovates and 0 other-

wise. The probability of a successful innovation is given by a Bernoulli distribution with success

probability

p(ji = 1) = 1− exp(−a
S′

i

Kθ
i

), (4)

where a is a parameter that influences the success rate of innovations and Kθ
i reflects the scaling

of revenues with the firm’s capital stock.5 Higher R&D stocks lead to a greater probability of

a successful innovation. This parsimonious parametrization implies that success probabilities are

concave in S′

i, consistent with economic reasoning. In the event of success, log profitability, z,

jumps by a constant, λ, which measures the improvement in the firm’s profitability from a suc-

cessful innovation. Related, Pakes and McGuire (1994) analyze a framework where firms realize a

constant jump in profitability with endogenous probability that is a decreasing function of product

development expenditures.6

The success probability decreases as firm size increases. The scaling by Kθ
i can be thought of

as capturing an increase in R&D project size with average revenues. As such, larger firms with

greater average revenues require a greater level of R&D investment to generate the same probability

of success as a small firm. This is similar to the approach in Klette and Kortum (2004), where

the firm’s innovation intensity is proportional to its R&D investments scaled by revenues.7 An

alternative specification would be to scale by per-period sales instead of the capital stock to the

power θ. However, scaling by per-period sales would have the unappealing property that, ceteris

paribus, a firm that received a negative profitability shock, and therefore had lower sales, would

have a higher probability of realizing an innovation.

The transition equation for profitability includes a standard AR(1) component plus jumps from

5In the monopolistically competitive framework development in Section 2.1, profits and revenues exhibit the same
curvature with respect to the capital stock.

6Kortum (1997) employs a search theoretic approach in which the rate of arrival of ideas is exogenous and the
efficiency of the improvement depends on the R&D stock.

7The endogenous growth theory model of Romer (1990) implies that innovation increases with the level of R&D.
Subsequent work by Jones (1995b) demonstrates that this relationship does not hold in the data. Jones (1995a),
Young (1998), and Segerstrom (1998) introduce endogenous growth models without scale effects.
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innovations:

log(z′i) = µ+ ρ log(zi) + λji + ǫi, (5)

ji ∝ B(p(
S′

i

Kθ
i

)),

ǫi ∝ N(0, σ2).

The distribution for ji is independent of the distribution for ǫi. In this setup, the jump intensity

varies endogenously with R&D stocks. Further, firms base their decisions upon realizations of z′i

and do not distinguish between changes in profitability due to exogenous shocks or innovations.

Therefore, the impact of an innovation will decay at the same rate ρ as the impact of exogenous

shocks. These assumptions yield the simplification that only the current level of profitability enters

into the firm’s policy functions.

The model is agnostic on the source of the jump in profitability from a successful innovation.

This innovation may arise from either improvements in the current products of the firm, the intro-

duction of entirely new products, or productivity increases. More formally, a successful innovation

may result in an increase in the productivity parameter xi or the demand shifter di. This is similar

to the approach taken in the production-function-based literature, where the impact of R&D on

value added could be due to all of the above factors. The model also does not take a stand on

whether patent protection is necessary for generating an increase in profitability (see Boldrin and

Levine (2008)). The above approach allows R&D investment to have a broad impact on the firm.

Correspondingly, the endogenous growth literature highlights both quality improvements and new

product introductions as the outcome of innovations.

The timing of the firm’s decisions and the notation for R&D and capital stocks warrant clarifi-

cation. Firms enter each period with an R&D stock, a capital stock, and a profitability level. The

firms invest in R&D and capital during the period. Denote the R&D and capital stocks at the end

of the period by S′ and K ′, respectively. At the end of the period, each firm discovers whether it

successfully innovated or not. The innovation probability depends on the ratio of the R&D stock

at the end of the period (S′) to the average revenues a firm of that size would have earned over

the period (Kθ). If a firm succeeds, its next period profitability will be higher than if it did not.

The accumulated R&D stock carries over to the next period, and a fraction of it becomes obsolete

after the realization of the innovation outcome. The capital stock, adjusted for investment and

depreciation, carries over to the next period and is used to generate output. This timing structure
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captures the idea that R&D investment in the current period—which determines R&D stocks at

the end of the period—impacts the transition function for the firm’s profitability from this period

to the next.

2.3 Tax subsidy on R&D investment

The Research and Experimentation tax credit was established by the Economic Recovery Tax Act of

1981 to encourage R&D investment by U.S. firms. However, only some R&D expenses are eligible

for the tax credit, and the set of qualifying expenses has evolved over time. The tax credit is

calculated as a percentage of qualifying expenses that exceed a base amount that varies either with

the company’s past qualifying expenses or sales. In addition, an alternative tax credit, established

in 1996, benefits companies with smaller increases in R&D expenses. Since inception, the Research

and Experimentation tax credit has existed as a temporary tax benefit that has been repeatedly

extended over time.

The complexities of the Research and Experimentation tax credit and the uncertainty over

its permanence make it very challenging to accurately capture the details of the tax credit in

the model. As such, this study takes a simplified approach that incorporates the Research and

Experimentation tax credit as a linear tax subsidy, τrd, of all R&D expenses. The subsidy rate

is calibrated at 2.5%, based on the findings of Moris (2005), who reports that the tax credit as a

percentage of all corporate R&D expenses ranges from about 1.5% to 3.5%.

2.4 Firm value

The dividends paid by the firm in each period are given by

(Π(Ki, zi)−Ri)(1 − τ) + δKtτ +Riτrd − Ii − b
I2i
2Ki

,

where τ denotes a linear tax rate. As in the tax code, R&D expenses are treated as tax deductible.

The δKtτ term captures the tax deductibility of depreciation, and the Riτrd term captures the R&D

tax credit. The tax rate parameter, τ , is calibrated using data on aggregate taxes and profits. The

model thus incorporates other factors that affect taxes payable by firms, such as debt financing, in

a parsimonious manner.

Denote the value of the firm after the realization of zi but prior to the obsolescence of the R&D

8



stock as V (Ki, Si, zi).
8 For notational convenience, define

D(Ki, zi) = Π(Ki, zi)(1− τ) + δKtτ − Ii − b
I2i
2Ki

. (6)

The value of the firm can be expressed as a solution to the following Bellman equation:

V (Ki, Si, zi) = max
Ii,K

′

i
,Ri,S

′

i

D(Ki, zi)−Ri(1− τrd − τ) + βEz[Vc(K
′

i, S
′

i, z
′

i)], (7)

K ′

i = Ki(1− δ) + Ii,

S′

i = Si(1− γ) +Ri,

S′

i ≥ 0,

where the continuation value of the firm, Vc(K
′

i, S
′

i, z
′

i), takes into account the possibility that the

firm may exit next period. Ez[·] denotes expectation conditional on the current profitability level,

zi. The expectation in the Bellman equation is taken over the joint distribution for ji, ǫi. The

results in Bertsekas (2000, Chapter 7) yield the existence and uniqueness of the solution to the

above problem.

The above value function can be simplified by noting that the absence of any frictions on

adjusting R&D imply that the value function is separable in Si. This simplification helps with

the estimation as it reduces the number of state variables in the firm’s optimization problem and

enables a derivation of the optimal R&D stock as a function of the capital stock and profitability

stock. The simplification follows from substituting the expression for Ri into the maximization

problem, which yields

V (Ki, Si, zi) = max
Ii,K

′

i
,S′

i

D(Ki, zi) + Si(1− γ)(1 − τrd − τ)− S′

i(1− τrd − τ) + βEz[Vc(K
′

i, S
′

i, z
′

i)],

K ′

i = Ki(1− δ) + Ii,

S′

i ≥ 0.

Si does not impact the optimization problem for either K ′

i or S′

i. This motivates the conjecture

8Defining the value function at this point ensures notational symmetry between capital and R&D stocks.
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that the value of the firm can be simplified as follows:

V (Ki, Si, zi) = G(Ki, zi) + Si(1− γ)(1− τrd − τ). (8)

The value of the R&D stock equals Si(1 − γ)(1 − τrd − τ) due to the model’s timing convention.

The effective value of Si equals its value after obsolescence, which is modified by the tax benefits

of R&D expenses. Substituting the above expression into the Bellman equation, one obtains

G(Ki, zi) = max
Ii,K

′

i
,S′

i

D(Ki, zi)− S′

i(1− τrd − τ) + βS′

i(1− γ)(1 − τrd − τ) + βEz[Gc(K
′

i, z
′

i)],(9)

K ′

i = Ki(1− δ) + Ii,

S′

i ≥ 0.

The expected value of Ez[Gc(K
′

i, z
′

i)] takes into account both the realization of profitability jumps

from innovations and the exogeneous shocks. Using the law of iterated expectations, it can be

written as

Ez[Gc(K
′

i, z
′

i)] = Ez[Gc(K
′

i, z
′

i)|ji = 1]p(ji = 1) + Ez[Gc(K
′

i, z
′

i)|ji = 0]p(ji = 0), (10)

where the probability of a successful innovation depends on the optimal R&D stock S′ and is given

by equation (4). The continuation value, Gc(K
′

i, z
′

i), is given by

Gc(K
′

i, z
′

i) = max{G(K ′

i, z
′

i), 0}. (11)

This analysis establishes our conjecture and demonstrates that the value function is separable

in the R&D stock. Note that this is not a general result; it arises from the assumption that the

R&D stocks can be adjusted without any friction. Put differently, the above result states that,

because of the lack of adjustment costs, the optimal R&D stock does not depend on the lagged

R&D stock. The separability of the value function also has the additional implication that firms

realize a negative return to R&D investment in periods where they fail to innovate.

While the R&D stock, Si, is not a state variable per se in the model, it does influence the optimal

R&D expenditure flows, Ri, which equal the optimal next-period R&D stock minus the current
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period R&D stock adjusted for obsolescence.9 In addition, firm value is given by Equation (8),

which incorporates the residual value of the existing R&D stock. As such, the formulation of the

model in terms of R&D stocks—a more general formulation than using only R&D expenditures—

has a meaningful effect on the model implications.

2.5 R&D policy

The above analysis enables the derivation of the optimal R&D policy. The optimal choice of S′

i

affects the current period dividend payment, the level of the R&D stock carried over to the next

period, and the transition function for profitability z. The first two terms are linear in S′

i. Let

S̃′

i be the optimal policy in the interior region where the S′

i ≥ 0 constraint does not bind. The

following proposition characterizes the optimal R&D stock:

Proposition 1 The optimal R&D stock of the firm when S′

i > 0 is given by

S̃′

i

Kθ
i

=
1

a

[

log(a)− log ((1− τrd − τ)(1 − β(1− γ))) + log

(

β(Ez [Gc(K
′

i, z
′

i)|ji = 1]− Ez[Gc(K
′

i, z
′

i)|ji = 0])

Kθ
i

)]

.

Proof. See Appendix A.

Therefore, the optimal policy function for R&D stocks is given by

S′

i

Kθ
i

= max(
S̃′

i

Kθ
i

, 0).

The optimal R&D stock increases with the expected increase in firm value per unit of average

sales from an innovation, which is a function of the profitability jump parameter, λ. In addition, the

optimal R&D stock depends on the discount rate, the tax subsidy to R&D, and the obsolence rate,

γ. The exponential function for the success rate implies that the above terms affect the optimal

R&D stock logarithmically. Finally, the success rate parameter a also enters into the optimal R&D

policy function. The above expression indicates that the three R&D related parameters, a, λ, and

9One could draw an analogy with investment policy in (S,s) models, such as Caballero and Engel (1999), where,
conditional on adjustment, the next-period capital stock does not depend on the current capital stock. However,
conditional on adjustment, the optimal investment policy in these models does depend on the current capital stock,
as it equals the next-period capital stock minus the current capital stock adjusted for depreciation.
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γ in the model all influence the optimal R&D stock (and therefore R&D expenditures) in a distinct

manner.

The above expression indicates that one can decompose the total return from R&D investment

into an increase in the residual R&D stock and an expected increase in firm value from an innovation.

The increase in firm value from an innovation incorporates both increases in profitability in the next

period and beyond and the optimal rebalancing of the capital stock following an innovation. This

decomposition highlights the dynamic benefits to R&D in the model, where firms follow a successful

innovation with investment in physical capital, amplifying the benefit of the initial profit increase.

While the above approach enables one to examine R&D expenditures and investment together, one

disadvantage is that it ignores the impact of industry structure on firms’ R&D expenditures, as

emphasized by Aghion, Harris, Howitt, and Vickers (2001) and Aghion, Blundell, Griffith, Howitt,

and Prantl (2009).

3 Data and Estimation

This study estimates the above model using simulated methods of moments estimation (see Gourier-

oux, Monfort, and Renault (1993) for details).10 This method involves comparing a selected set of

data moments with the same moments from an artificial data set obtained by simulating the model

for a given set of parameters. The parameter estimates are obtained by minimizing a quadratic

form of the difference between the data and simulated moments. Appendices B and C discuss the

estimation in more detail.

The simulated method of moments is employed since the model’s policy function for R&D

is expressed in terms of jumps in firm value arising from innovations, an unobservable variable.

Further, using this method enables one to simultaneously estimate all the parameters of interest,

which enables policy experiments on changing the R&D tax credit.

3.1 Data

The data for the estimation are obtained from the Compustat annual data set.11 The data set

includes information on profits, research and development expenses, capital expenditures, and

10Other papers that use this method include: Cooper and Ejarque (2003); Hennessy and Whited (2005); Cooper
and Haltiwanger (2006); Hennessy and Whited (2007); Lentz and Mortensen (2008); Eberly, Rebelo, and Vincent
(2008); Xu (2008); Akcigit (2009); Bloom (2009); and Kaplan (2012).

11Griliches (1994) discusses the various data sources employed in the empirical R&D literature.
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balance sheet items for listed U.S. corporations. The market value of equity is obtained from the

linked Center for Research in Security Prices (CRSP) data set. The sample period extends from

1985 to 2006 and excludes financial firms and regulated utilities. The sample is an unbalanced

panel, as firms enter and exit the data. This corresponds to the model, where a firm may exit if its

continuation value net of the value of the R&D stock, G(K, z), becomes negative.

More than half of the firm-year observations report data on research and development expendi-

tures (Compustat annual data item 46). This series measures company-funded R&D and excludes

those funded by the government. Many companies do not report this series for any years. Among

the firms that do report, more than 75% report R&D expenses for all years. This indicates that

one can fairly clearly identify a subset of firms that engage in R&D. Those that do not engage in

R&D are considered to do so for exogenous reasons and excluded from the estimation. The sample

of firms that report R&D expenditures in each year are included in the sample, and these comprise

the bulk of it. For firms that report R&D expenditures in some, but not all years, the study in-

cludes those with R&D values in at least half their years in the sample.12 This implies that a few

observations in the sample have zero R&D expenditures; the inclusion of these few observations is

not inconsistent with data obtained from simulating the model, as a very small fraction of simulated

firm-year observations have such steep declines in R&D stocks that their R&D expenditures are

slightly negative.

One concern is whether the firms are accurately reporting their R&D expenses. Accounting rules

provide some comfort in this regard, as they clearly specify the classification and reporting of R&D

expenditures. In addition, the Research and Experimentation tax credit has indirectly increased

the attention firms give to accounting for R&D expenses. Last, a cross-industry examination shows

that industries that one might ex ante expect to be R&D intensive have much higher fractions of

firms that report R&D expenses.

The study measures sales as net sales (data item 12), profits as operating income before de-

preciation (data item 13), and investment as capital expenditures (data item 30) net of retirement

of fixed assets (data item 184). The replacement value of the capital stock is derived using the

perpetual inventory method employed by Summers and Salinger (1983), where the mean life of the

capital stock is calculated using the double declining balance method. Profitability equals operating

income before depreciation scaled by the replacement value of the capital stock. Tobin’s q equals

the market value of equity plus the book value of debt minus the book values of inventories and

12The matched moments used in the estimation are not particularly sensitive to changes in this threshold.
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Table 1: Summary statistics

Panel A reports summary statistics for firms in the entire sample. The sample in-
cludes R&D-reporting firms in nonfinancial industries and contains 32,351 firm-year
observations. Panel B reports selected summary statistics for firms in R&D-intensive
industries.

Panel A: All firms

Mean Std.

Log assets 6.099 1.940
Tobin’s q 3.520 3.340
Profitability 0.333 0.427
R&D to sales 0.088 0.157
Investment 0.159 0.133
Observations 32351

Panel B: Firms in R&D-intensive industries

Mean Observations
R&D to sales Profitability Tobin’s q

Business services 0.109 0.298 4.084 960
Chips 0.127 0.287 3.670 4274
Hardware 0.114 0.308 3.565 2102
Medical equipment 0.101 0.430 4.675 2719
Pharmaceuticals 0.310 0.225 6.525 2120
Software 0.171 0.289 5.636 3182

cash, divided by the replacement value of capital. This follows the method employed by Whited

(1992) and Gomes (2001), with the modification that cash holdings are also subtracted from the

numerator.

Panel A of Table 1 reports the summary statistics for the sample of firms used in the study.

The statistics reveal that these firms exhibit a high R&D intensity. At the same time, these firms

also have high Tobin’s q values that would be difficult to reconcile with standard models based on

investment frictions such as Hayashi (1982). This suggests that R&D expenditures play a key role

in understanding the valuation of these firms, as emphasized in the above model.
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3.2 Industry classification

In addition to estimating the model on the sample described above, this study also estimates the

model for firms in selected R&D-intensive industries. Estimating the model on these industries

helps answer the question of whether the model can successfully capture firms’ behavior in these

industries. In addition, it sheds light on how the model parameters vary across these industries.

The industry groups mostly follow the 49 industry groups constructed by Kenneth French

using four-digit SIC code data.13 The one exception being the medical equipment industry, which

combines the medical equipment and laboratory equipment industries. Appendix D details the

SIC codes used in each industry category. These industries were chosen as they have the highest

concentration of firms engaging in R&D as well as the highest R&D intensities.

Panel B of Table 1 reports summary statistics for firms in these R&D intensive industries.

Compared with the overall sample, firms in these industries have higher R&D intensities and

higher Tobin’s q values.

3.3 Calibrated parameters

Some of the auxiliary parameters are calibrated to simplify the estimation. These include the

discount rate, β, which is set to 1/1.04 to match a return to capital of 4%. The steady-state

investment rate equals the depreciation rate in the simulated data. As such, the depreciation rate

δ is set equal to the investment rate in the data, 0.165. The tax rate parameter, τ , is calibrated

to equal the ratio of aggregate income taxes to operating profits in the data. In the industry-level

estimation, both the depreciation rate and the tax rate are modified to reflect the corresponding

data values for those industries. Last, the constant term in the AR(1) equation for profitability, µ,

functions only as a scaling parameter.14 As such, µ is set such that the steady-state capital stock

equals 1.

3.4 Moments and identification

When using simulated method of moments, it is important to chose moments that are informative

about the underlying parameters. This section discusses the moments used in the estimation and

relates them to the underlying parameters.

13The industry classifications are available at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html.
14Changes in µ shift the steady-state capital stock, but do not affect any of the ratios used in the estimation, such

as the R&D-to-sales ratio or Tobin’s q.
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The matched moments comprise the following: averages of R&D to sales, fixed costs, profitabil-

ity, and Tobin’s q; standard deviations of R&D to sales, profitability, and investment; autocor-

relations of R&D to sales, profitability, and investment; and correlations between R&D to sales

and investment, investment and Tobin’s q, and lagged R&D to sales and sales growth. In order

to minimize the effect of outliers and reporting errors in the sample data set, all the firm level

variables underlying the calculation of these moments are top- and bottom-coded.

The moments involving the R&D-to-sales ratio help pinpoint the three R&D-related parameters

in the model: λ, γ, and a. As seen in Proposition 1, changes in all these parameters influence the

optimal R&D stock and therefore the average and standard deviation of the R&D-to-sales ratio.

The correlation between lagged R&D-to-sales ratio and sales growth helps inform the impact of

a successful innovation on profits, λ. The autocorrelation of the R&D-to-sales ratio varies with

the obsolescence rate, γ, as a high obsolescence rate implies a lower autocorrelation. The success

rate parameter, a, influences Tobin’s q in the simulated data, as higher success rates translate to a

higher contribution of R&D investment to firm value.

The fixed costs parameter, fc, is pinned down by the ratio of fixed costs to sales. The curvature

of the profit function, θ, is mainly pinned down by the averages of profitability and Tobin’s q.

The autocorrelation, ρ, and standard deviation, σ, of the profitability process are identified by

the corresponding moments for profitability. These two parameters also influence the average of

Tobin’s q, and the autocorrelation and standard deviation of the R&D-to-sales ratio. The standard

deviation of investment helps pin down the investment adjustment cost parameter, b.

It should be noted that although the above discussion links specific parameters to specific

moments to help provide intuition, the estimation employs all the moments to identify all the

parameters jointly. Indeed, changes in any parameter can, and in most cases do influence all of the

moments. Section 5 examines whether the above identification argument fares well in practice.

4 Results

This section presents the results from estimating the structural model. It first presents results

obtained from the entire sample, and then presents results obtained from selected R&D-intensive

industries. Last, it presents results obtained from estimating an extension of the model, where

R&D investments can lead to multiple profitability jumps per period.
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4.1 All R&D firms

Table 2 presents the results from estimating the model on all firms in the sample. Panel A presents

the parameter estimates, and Panel B presents the matched moments from the data and the model.

The estimate for λ indicates that the underlying profitability process z jumps by an economically

significant 22.2% when firms realize innovations. The estimate for a translates to an average success

rate of about 83%. Together, these imply an expected increase in the underlying profitability process

due to R&D expenditures of 18.5%. Such a large impact from R&D investment not only helps the

model generate high levels of R&D expenditures, it also enables the model to generate the high

Tobin’s q levels observed in the data.15 Indeed, an average value for Tobin’s q of 3.57 would be

hard to justify using only a physical investment perspective. For comparison, the model generates

an average shadow price of capital, 1 + b I
K
, of only 1.08.

The estimated obsolescence rate for R&D investment, γ, is higher than the value of 15% tradi-

tionally employed in the production-function literature (see Griliches and Mairesse (1984)). But,

Hall (2010) obtains depreciation rates in the range of 20% to 40% using a valuation-based ap-

proach. Further, the model incorporates successful innovations from past R&D investments in

the z term, whereas all the benefits of past R&D investments accrue in the R&D stock in the

production-function-based literature. As such, it is plausible to expect a higher obsolescence rate

from a modeling approach that emphasizes the role of R&D in generating innovations. Conversely,

the finding that γ < 1 indicates that R&D stocks influence innovations, not R&D flows, as would

be the case if γ = 1.

The estimated curvature of the profit function, θ, is lower than the estimates obtained by Cooper

and Haltiwanger (2006). Assuming a capital share of 1/3 and applying Equation (2), one obtains

an implied price elasticity of demand of 2.97 (=1/0.337), within the range of estimates obtained

in the literature (see Broda and Weinstein (2006) and Hendel and Nevo (2006)). The estimated

autocorrelation and profitability shock terms are directly related to their matched moments. Last,

the estimated adjustment cost parameter, λ, is within the range of 0 to 2 typically obtained in the

literature (see Cooper and Haltiwanger (2006) and Whited (1992)).

In terms of the matched moments, the model matches the averages moments quite well. The

model generates a mean R&D-to-sales ratio that is a bit lower than the data, while generating

somewhat higher mean profitability and Tobin’s q levels. The model does not fare so well regarding

15See Hall (2001) and Corrado, Haltiwanger, and Sichel (2005) for evidence that intangible capital, more broadly,
plays an important role in understanding the value of the aggregate capital stock.
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Table 2: One profitability jump per period

Panel A reports the estimated structural parameters and a goodness-of-fit statistic, Ψ̂.
Panel B reports the matched moments from the sample and simulated data sets. The
sample includes R&D-reporting firms in nonfinancial industries and contains 32,351
firm-year observations. Section 3.1 details the construction of the sample and the vari-
able definitions. The probability of success from R&D investment is given by a Bernoulli
distribution. The estimation is carried out using simulated method of moments.

Panel A: Parameter estimates

Parameter θ ρ σ λ a b γ fc Ψ̂

Estimate 0.396 0.587 0.380 0.222 5.293 0.497 0.322 0.409 2671
Std. err. (0.002) (0.006) (0.003) (0.003) (0.253) (0.031) (0.018) (0.004)

Panel B: Moments

Moments Data Model

Averages
R&D to sales 0.087 0.082
fixed costs 0.241 0.229
profitability 0.333 0.365
Tobin’s q 3.477 3.571

Standard deviations
R&D to sales 0.056 0.028
profitability 0.253 0.309
investment 0.105 0.101

Autocorrelations
R&D to sales 0.366 0.709
profitability 0.422 0.555
investment 0.341 0.317

Correlations between
R&D to sales and investment -0.022 -0.108
investment and Tobin’s q 0.280 0.341
lagged R&D to sales and sales growth 0.062 0.286

Success rate 0.833
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the standard deviation moments, as it implies a lower standard deviation of R&D than in the data,

suggesting that other sources of heterogeneity also influence firms’ R&D decisions.

The model manages to match the correlation between lagged R&D to sales and sales growth

fairly well. This moment captures the impact of R&D expenditures on subsequent sales growth and

therefore on subsequent increases in profitability. The model also generates the modest correlation

between investment and Tobin’s q observed in the data; investment-based models typically have

difficulty matching this moment, as these models imply a high correlation. Measurement error in

Tobin’s q may provide part of the explanation as to why the correlation between it and investment

in the data is less than what would be implied by investment models (see Erickson and Whited

(2000)). Finally, the model implies a somewhat surprising negative correlation between R&D to

sales and investment. This arises because while the optimal policy for the R&D stock given in

Proposition 1 is highly correlated with Tobin’s q and investment, the correlation between the flow

of R&D expenditures and investment is much weaker and can become negative.

4.2 R&D-intensive industries

Table 3 reports the parameter estimates obtained from the estimation of the model on the selected

R&D-intensive industries, as detailed in Section 3.2.

The parameter estimates indicate that the model captures heterogeneity across these industries

both in terms of their R&D-related parameters and other parameters. For instance, successful

innovations have a much bigger immediate impact on the underlying profitability process in the

pharmaceutical and software industries than in other industries. That said, innovations have a

meaningful impact on profitability in all of the selected industries.

The model generates a range of estimates for the obsolescence rate for R&D, γ. While the

estimate for some industries is similar to that obtained for all firms, in other industries the estimates

are not significantly different from 1, indicating that R&D flows influence innovations, not R&D

stocks. Nonetheless, even in these industries, R&D investments can influence profitability and

valuations for many years through the persistence of increases in profitability from innovations.

That said, the high obsolescence rate in the pharmaceuticals industry is somewhat puzzling given

the long duration of R&D projects in this industry. Mechanically, having a high obsolescence rate

helps the model generate the high rate of R&D investment observed in the data. The estimates

of a vary widely across the industries, translating into noticeable differences in the average success

rate of innovations, which ranges from 0.67 in the pharmaceutical industries to 0.94 in the medical
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Table 3: Parameters from industry-level estimation

The table reports the parameters estimates obtained from the estimation of the model
on firms in selected R&D-intensive industries constructed using four-digit SIC codes.
Appendix D details the SIC codes used in each industry group. Section 3.1 details the
construction of the sample and the variable definitions. The probability of success from
R&D investment is given by a Bernoulli distribution. The estimation is carried out
using simulated method of moments.

Parameter θ ρ σ λ a b γ fc Ψ̂

Business Services
Estimate 0.392 0.591 0.348 0.228 4.392 0.457 0.365 0.375 103
Std. err. (0.009) (0.024) (0.017) (0.022) (1.019) (0.071) (0.089) (0.020)

Chips
Estimate 0.450 0.599 0.387 0.207 8.750 0.585 1.000 0.337 435
Std. err. (0.006) (0.010) (0.008) (0.004) (2.631) (0.088) (0.275) (0.011)

Hardware
Estimate 0.421 0.617 0.438 0.246 4.144 0.674 0.378 0.409 238
Std. err. (0.007) (0.020) (0.008) (0.015) (0.285) (0.087) (0.058) (0.023)

Medical Equipment
Estimate 0.260 0.599 0.242 0.384 9.514 0.345 0.534 0.479 294
Std. err. (0.003) (0.020) (0.005) (0.006) (1.242) (0.011) (0.064) (0.006)

Pharmaceuticals
Estimate 0.256 0.545 0.102 0.504 2.190 0.391 0.902 0.327 281
Std. err. (0.002) (0.012) (0.003) (0.008) (0.245) (0.023) (0.108) (0.011)

Software
Estimate 0.250 0.591 0.256 0.461 7.018 0.443 0.896 0.456 926
Std. err. (0.002) (0.014) (0.006) (0.005) (1.373) (0.059) (0.173) (0.005)
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equipment industry. Broadly speaking, even firms in these R&D-intensive industries face some risk

each year of not realizing a positive payoff from R&D investments through an innovation.

The estimates for the curvature parameter θ reflect changes in the average value of Tobin’s q

across these industries. Having a lower value of θ enables the model to generate a higher average

Tobin’s q, as lower θ values reduce the change in the optimal capital stock necessary following a

successful innovation (or a large profitability shock). This also helps lead to higher R&D expendi-

tures. The estimated parameter values for ρ and σ mainly reflect the autocorrelation and standard

deviation of profitability in these industries. Last, changes in the adjustment cost parameter, b,

mainly reflect differences in the standard deviation of investment. Notably, each of these parameter

estimates are broadly similar to the estimates from all R&D firms reported in Table 2.

Table 4 reports a subset of the matched moments from the data and the model from the

estimation of the model on the selected R&D-intensive industries.16 The results indicate that the

model can generate the very high levels of R&D-intensity observed in some of these industries.

Somewhat surprisingly, the model generates somewhat higher average values of Tobin’s q and

profitability than observed in the data. This may be partly because having higher levels of Tobin’s

q and profitability helps increase average R&D intensity.

The model matches the correlation between lagged R&D intensity and sales growth in most

of the industries. This is driven partly by the role of R&D investments in generating profitability

increases through innovations. While the model generates a relatively low correlation between

Tobin’s q and investment, it is nonetheless unable to generate correlations as low as those observed

in the data.

4.3 All R&D firms with multiple jumps per period

One concern with structural estimation is that the findings are based on a specific model. As

such, it is helpful to examine the sensitivity of the findings to the model specification. This section

presents the findings obtained from estimating a model that relaxes the assumption that firms can

obtain only one profitability jump per period. Extending the model in this manner helps tackle

one limitation of the baseline model. Namely, the fact that R&D expenditures do not influence

the size of the profitability jump conditional upon obtaining an innovation. With multiple possible

jumps, increases in R&D expenditures influence the probability of success and the size of the jump

conditional upon a success.

16The unreported moments are available from the author on request.
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Table 4: Moments from industry-level estimation

The table reports selected matched moments from the actual data and the simulated
data derived from the estimation of the model on firms in selected R&D-intensive indus-
tries constructed using four-digit SIC codes. Appendix D details the SIC codes used in
each industry group. Section 3.1 details the construction of the sample and the variable
definitions. The probability of success from R&D investment is given by a Bernoulli
distribution. The estimation is carried out using simulated method of moments.

Averages Correlations between Success rate
R&D to profitability Tobin’s q lag R&D to sales investment
sales sales growth Tobin’s q

Business services
Data 0.107 0.299 4.042 0.277 0.107
Model 0.101 0.331 4.098 0.211 0.292 0.799

Chips
Data 0.125 0.287 3.636 0.331 0.042
Model 0.112 0.326 3.681 0.267 0.356 0.693

Hardware
Data 0.113 0.307 3.533 0.383 -0.064
Model 0.110 0.354 3.710 0.471 0.269 0.808

Medical equipment
Data 0.100 0.429 4.632 0.223 0.132
Model 0.092 0.470 4.808 0.242 0.400 0.938

Pharmaceuticals
Data 0.307 0.231 6.503 0.239 0.135
Model 0.280 0.267 6.586 0.102 0.433 0.667

Software
Data 0.170 0.289 5.607 0.296 0.014
Model 0.164 0.341 5.893 0.195 0.409 0.914
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The number of profitability jumps that firms obtain from R&D expenditures is now assumed

to follow a geometric distribution, with success probability

p(
S′

i

Kθ
i

) = 1− exp(−a
S′

i

Kθ
i

).

This implies that the probability of obtaining n profitability jumps is given by (1 − p)pn. The

profitability increase that firms obtain from innovations is linear in the number of jumps, n, with λ

denoting the increase in profitability arising from a single jump. Formally, the transition equation

for z is given by

log(z′i) = µ+ ρ log(zi) + λni + ǫi, (12)

ni ∝ G(p(
S′

i

Kθ
i

)),

ǫi ∝ N(0, σ2),

where G(p(
S′

i

Kθ

i

)) denotes a geometric distribution. Other than for this change, the model remains

unchanged from that discussed above. One limitation of the extended model is that one cannot

explicitly solve for the optimal R&D stock as in Proposition 1.17

Table 5 presents the results obtained from estimating the extended model on all firms in the

sample. Panel A presents the parameter estimates, and Panel B presents the matched moments

from the data and the model.

The estimated value for the profitability increase from a single jump, λ, is much lower than

before. However, this is offset by an average number of profitability jumps of about 9.2, implying a

total expected increase in profitability from R&D investments of about 20.3%, similar to that ob-

tained in the model with one jump per period. The estimated obsolescence rate, γ, while somewhat

lower than that obtained in Section 4.1, is still higher than the value of 0.15 that the literature

often calibrates to. Finally, the estimates for the non-R&D parameters are mostly similar to before.

Turning to the matched moments, the model matches the various averages used in the esti-

mation. As in Section 4.1, the model fails to generate the volatility of R&D intensity observed in

the data. The model generates a small, albeit positive, correlation between lagged R&D intensity

17The extended model is also much more computationally intensive to solve, as one needs to solve for value functions
over a range of possible jumps. In order to maintain tractability, the estimation sets the number of maximum possible
jumps at 10.
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Table 5: Multiple profitability jumps per period

Panel A reports the estimated structural parameters and a goodness-of-fit statistic, Ψ̂.
Panel B reports the matched moments from the sample and simulated data sets. The
sample includes R&D-reporting firms in all industries and contains 32,351 observations.
Section 3.1 details the construction of the sample and the variable definitions. The
number of successful profitability jumps obtained from R&D investment is given by
a geometric distribution. The estimation is carried out using simulated method of
moments.

Panel A: Parameter estimates

Parameter θ ρ σ λ a b γ fc Ψ̂

Estimate 0.414 0.657 0.356 0.022 10.353 0.429 0.229 0.417 2544
Std. err. (0.011) (0.008) (0.004) (0.001) (0.263) (0.073) (0.006) (0.012)

Panel B: Moments

Moments Data Model

Averages
R&D to sales 0.087 0.080
fixed costs 0.241 0.229
profitability 0.333 0.371
Tobin’s q 3.477 3.644

Standard deviations
R&D to sales 0.056 0.024
profitability 0.253 0.309
investment 0.105 0.110

Autocorrelations
R&D to sales 0.366 0.442
profitability 0.422 0.571
investment 0.341 0.296

Correlations between
R&D to sales and investment -0.022 -0.163
investment and Tobin’s q 0.280 0.466
lagged R&D to sales and sales growth 0.062 0.215

Average number of jumps 9.23
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and sales growth. Overall, the similarity in the parameter estimates and the simulated moments

obtained using the estimations with a single profitability jump and multiple profitability jumps

gives comfort regarding the robustness of the results.

5 Identification

It is important to establish that the estimation procedure used in the study can indeed identify the

various model parameters, particularly those related to R&D investment. This section tackles iden-

tification concerns using two methods: a graphical examination of the sensitivity of the simulated

moments to model parameters and a reestimation of the model on simulated data.

5.1 Sensitivity of moments to model parameters

One potential concern is that the GMM-objective function that is being minimized in the estimation

is fairly flat with respect to some of the model parameters. This would imply that the matched

moments are uninformative regarding those parameters. The low standard errors for the model

parameters suggest that this is unlikely, as a flat GMM-objective function would imply a high

standard error, but it is helpful to verify that this is indeed so. Figure 1 plots the weighted sum-

of-square differences between the data and simulated moments over a range of values for the three

R&D-related parameters, a, λ, and γ. The parameter values range from 0.975 to 1.025 times the

estimated value. The figure indicates that the GMM-objective function that is minimized by the

estimator is indeed steeply sloped for each of the three parameters, indicating that the GMM-

objective function is sensitive to the model parameters. This implies that the moments used in the

estimation are indeed informative about the R&D-related parameters in the model.

One further concern is that some pair of the R&D-related parameters may be colinear. That

is, the GMM-objective function may be mostly flat along some linear combination of λ, a, and

γ. The distinct manners in which these three parameters enter the R&D policy function shown

in Proposition (1) provides some comfort in this regard. Examining the covariance matrix for

the parameter estimates indicates that λ indeed has a low correlation with the other parameters.

However, the estimates for a and γ have a correlation of about 0.92, indicating some difficulty in

separately identifying these two parameters. This reflects the fact that these two parameters have

offsetting effects on the success probability shown in Equation (4)—a rise in a offsets the negative

impact of a rise in γ on the R&D stock St. As such, the positive correlation between the estimates
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Figure 1: GMM-objective function
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The figures plot the value of the GMM-objective function that is being minimized in the estimation
reported in Table 2 as a function of a, λ, and γ. In each plot, the other parameters are held
constant at their estimated values, while the x-variable varies over a 5% range centered on its point
estimate.
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for a and γ has little impact on the implied success rate probabilities from the model and thus has

little impact on the conclusion that firms face uncertainty in their R&D investment.

In order to further understand how the three R&D-related parameters are identified, Figure 2

plots some selected moments as a function of each of the three parameters. The figure indicates

that, for the most part, the selected moments are informative about each of the R&D-related

parameters. This variation in the moments with each of these parameters generates the variation

in the GMM-objective function seen in Figure 1.

The figure also helps explain the low correlation between λ and the other two R&D-related

parameters. While the average R&D-to-sales ratio increases with λ, it decreases with a and increases

with γ. However, while average profitability increases with λ, it increases with a and decreases with

γ, reflecting the effect of changes in steady-state firm size on measured profitability. The differential

correlation between the effect of λ and the other two R&D-related parameters on these two moments

leads to a relatively independent estimate for λ.

The figure indicates that the autocorrelation of the R&D-to-sales ratio is helpful for identifying

a and γ. While the other chosen moments have correlations with a and γ that differ in sign, the

autocorrelation of the R&D-to-sales ratio has a positive correlation with both of these parameters,

thus helping separate these two parameters.

5.2 Estimation on simulated data

The above analysis focuses on local identification of the R&D-related parameters in the model.

Another potential concern relates to global identification of the model parameters. The use of

the simulated annealing algorithm to search for the parameter vector that minimizes the GMM-

objective function partially alleviates this concern, as the simulated annealing algorithm uses a

global search method to avoid getting trapped in local minima (see Kirkpatrick, Gelatt, and Vecchi

(1983)).

One method of addressing global identification concerns involves reestimating the model on

the simulated data set obtained from the initial estimation. Assuming the estimation procedure

works well, one should recover the initial parameter estimates from this reestimation, as these

parameters, by construction, generate the target matched moments used in the estimation. Table

6 reports the results of estimating the model on the simulated data set. This estimation is carried

out using simulated data from the full sample estimation, as well as each of the industry-specific
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Figure 2: Selected moments
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The figure plots selected moments from the estimation reported in Table 2 as a function of λ, a,
and γ. Rows vary the selected moment, and the columns vary the R&D-related parameter. In each
plot, the other parameters are held constant at their estimated values, while the x-variable varies
over a 5% range centered on its point estimate.
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Table 6: Model estimation using simulated data

The table presents the results obtained from estimating the model on data obtained by
simulating the model with the parameters given in Tables 2 and 3. The table reports the
parameter estimates based on the actual data that are used to construct the simulated
data and the corresponding parameter estimates from the simulated data sets. The
weighting matrices for the estimations are also calculated using each of the simulated
data sets.

Parameter θ ρ σ λ a b γ fc

All firms
Actual data 0.396 0.587 0.380 0.222 5.293 0.497 0.322 0.409
Simulated data 0.397 0.592 0.354 0.221 5.197 0.484 0.315 0.400

Selected industries
Business services

Actual data 0.392 0.591 0.348 0.228 4.392 0.457 0.365 0.375
Simulated data 0.392 0.580 0.371 0.227 4.474 0.454 0.381 0.380

Chips
Actual data 0.450 0.599 0.387 0.207 8.750 0.585 1.000 0.337
Simulated data 0.450 0.599 0.387 0.207 8.801 0.587 0.997 0.338

Hardware
Actual data 0.421 0.617 0.438 0.246 4.144 0.674 0.378 0.409
Simulated data 0.431 0.646 0.343 0.233 4.015 0.660 0.362 0.361

Medical equipment
Actual data 0.260 0.599 0.242 0.384 9.514 0.345 0.534 0.479
Simulated data 0.257 0.678 0.219 0.372 16.067 0.365 0.830 0.483

Pharmaceuticals
Actual data 0.256 0.545 0.102 0.504 2.190 0.391 0.902 0.327
Simulated data 0.253 0.609 0.108 0.464 2.843 0.381 0.986 0.330

Software
Actual data 0.250 0.591 0.256 0.461 7.018 0.443 0.896 0.456
Simulated data 0.264 0.471 0.380 0.470 3.563 0.452 0.495 0.451
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estimations.18

The results indicate that the estimation method is able to recover the parameters underlying

the simulated data when applied to the sample of all firms. This indicates that the estimation

method is successfully able to identify all of the model parameters when applied to the full sample.

The estimation method is also able to recover the underlying parameters for some, but not all,

of the industry estimates. In particular, the positive correlation between a and γ discussed above

generates difficulty in recovering these two parameters from the estimation on the simulated data

for a couple of the industry groups.

6 Counterfactual Experiment

One benefit of an estimated structural model is that it can be used to carry out counterfactual

policy experiments. This section uses the above estimated model to study the effect of an increase

in the tax subsidy to R&D, τrd. The U.S. federal tax code provides a Research and Experimentation

tax credit that is slated to expire at the end of 2013. The current budgetary environment makes

the future of this tax credit uncertain, although supporters advocate expanding the tax credit and

making it permanent.19

In particular, this section examines both the short-run and steady-state effects of an increase in

the tax credit using the estimated model. These two effects may differ as changes in the steady-state

distribution of firms can act as either a damping or amplifying mechanism for the initial short-run

effects. For instance, in the model above, an increased tax credit encourages additional innovation,

which leads to a shift in the steady-state profitability distribution in the economy. Investigating

both the short-run and steady-state effects is helpful, as while regression estimates typically identify

the short-run effects, policy evaluation requires an understanding of long-run effects.

The short-run effect can be formally derived by differentiating the optimal R&D policy function

given in Proposition 1 with respect to τrd to obtain

∂

∂τrd

(

S′

Kθ

)

=
1

a(1− τrd − τ)
.

18In addition to the matched moments, the weighting matrix used to minimize the sum-of-squared difference is also
recalculated when estimating the model on the simulated data.

19On September 8, 2010, President Obama called for the Research and Experimentation tax credit to be expanded
and made permanent.
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Table 7: Counterfactual experiment on a subsidy to R&D expenditures

The table reports the results of an increase in the tax subsidy on R&D expenditure,
τrd. The first panel reports the results from the estimations using all firms under the
assumptions of a single profitability jump. The subsequent panels report the results
from the estimations for the selected R&D-intensive industries. The “Experiment”
rows report values obtained with a higher tax subsidy of τrd = 0.05.

τrd $1.00 impact Steady-state averages
Short-run Steady- R&D to profitability Tobin’s q Success

state sales rate

All firms
Experiment 0.05 $1.19 $0.84 0.083 0.364 3.615 0.840

Selected industries
Business services

Experiment 0.05 $1.28 $0.95 0.104 0.329 4.141 0.812
Chips

Experiment 0.05 $1.86 $1.30 0.116 0.324 3.715 0.708
Hardware

Experiment 0.05 $1.25 $0.89 0.113 0.353 3.762 0.816
Medical equipment

Experiment 0.05 $0.62 $0.45 0.093 0.468 4.860 0.939
Pharmaceuticals

Experiment 0.05 $0.92 $1.01 0.288 0.260 6.783 0.682
Software

Experiment 0.05 $0.82 $0.58 0.166 0.341 6.018 0.916

One can rewrite the above expression in terms of a dollar impact on the optimal R&D stock of a

$1.00 R&D tax credit to obtain

1

S′

∂S′

∂τrd
=

Kθ

aS′(1− τrd − τ)
. (13)

In comparison, the steady-state effect can be examined by comparing the change in the mean R&D

expenditures—assuming a constant capital stock—before and after the counterfactual experiment.

Table 7 presents the results of a counterfactual experiment of an increase in the tax subsidy

to R&D expenditures, τrd, from 2.5% in the estimated model to 5%. Although the Research and

Experimentation tax credit uses a more complex formula than the proportional credit employed in
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the model, this experiment could be helpful for understanding the impact of an overall increase in

the tax subsidy provided to R&D expenditures both in the short-run and across steady states.

The increased R&D tax credit leads to an increase in R&D expenditures, reflecting the positive

marginal effect shown in Equation (13). In dollar terms, an additional $1.00 of R&D tax credits

lead to a short-run increase in R&D expenditures of about $1.20. This finding is similar to that

obtained by Hall and van Reenen (2000) and Bloom, Griffith, and van Reenen (2002), who find

that a $1.00 increase in R&D subsidies leads to a $1.00 or more increase in R&D expenditures.20

The ability of the model to replicate these empirical findings in the literature provides an indirect

validation of the model.

The increase in the success rate leads to an overall upward shift in the steady-state distribution

of z. This also leads to a small increase in the mean profitability and Tobin’s q. This shift can have

a mixed effect on the optimal R&D stock of the firm, which depends on the ratio of the expected

jump in firm value from an innovation to the capital stock to the power θ. As such, the steady-

state effect of the R&D tax credit may differ from the marginal effect. As the table indicates, the

results indicate that the steady-state effect is noticeably smaller than the short-run impact, with a

$1.00 R&D tax credit generating only 84 cents of additional R&D expenditures. This implies that

changes in the distribution of firms may mitigate the beneficial effects of R&D tax credits. One

limitation of this analysis is that it ignores possible further general equilibrium effects—through

changes in wages and the capital stock—of these policy changes.

The additional tax credit generates a small increase of less than one percentage point in the

average success rate of innovations. This small increase partly reflects the fact noted above that

the effect of the additional tax credit on R&D expenditures is not particularly large. Furthermore,

the success rate function shown in Equation (4) exhibits decreasing returns to scale, and given the

already high rate of R&D expenditures observed in the economy, the marginal effect of additional

R&D expenditures on the success rate is quite modest.

The counterfactual experiment on the industry-level estimates generates broadly similar find-

ings. The short-run dollar impact ranges from about 62 cents to as high as $1.86. While the

corresponding long-run impact is somewhat smaller for most of the industries, it rises for the med-

ical equipment industry, indicating that the difference between short-run and steady-state impacts

in the model varies with the estimated parameter values. The increased tax credit leads to an

increase in the average success rate of innovations in all industries; however, this increase is greater

20Conversely, Wilson (2009) finds no net effect of state R&D tax subsidies on R&D expenditures.
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in industries that had lower initial success rates. This finding is consistent with the above argument

that the R&D tax credits have only modest effects on success rates in the model when the estimated

parameters already imply a high rate of innovation.

7 Conclusion

This study presents a dynamic model of investment in R&D and physical capital. R&D investments

lead firms to generate stochastic innovations that increase profits. Firms invest in physical capital

following such innovations to benefit from the increase in their profitability. The model is estimated

on data on all firms that engage in R&D as well as firms in selected R&D-intensive industries.

The model captures variation in moments on R&D expenditures, profits and firm value across

heterogenous samples. These results highlight the uncertainty that firms face from their R&D

investments and that these investments play a key role in understanding firm profits and valuations.

The estimated model is used to carry out a counterfactual experiment on an increase in the tax

credit to R&D expenditures. The increased tax credit leads to an increase in R&D expenditures,

leading to higher profitability and valuations. The increased tax credit has only a modest effect on

the rate of innovation, reflecting the already high rate of innovation implied by the model estimates.

The findings also reveal that the effect of the increased tax credit may lessen over the long-run as

the increase in R&D expenditures also shifts the distribution of firms in the economy. This suggests

that further research into understanding the dynamics of firms’ R&D expenditures may be helpful

for evaluating the effect of R&D tax credits over the long-run.
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Appendix

A Proofs

Proposition 1 The optimal R&D stock of the firm when S′

i > 0 is given by

S̃′

i

Kθ
i

=
1

a

[

log(a)− log ((1− τrd − τ)(1 − β(1− γ))) + log

(

β(Ez [Gc(K
′

i, z
′

i)|ji = 1]− Ez[Gc(K
′

i, z
′

i)|ji = 0])

Kθ
i

)]

.

Proof. The first-order condition for the optimal R&D stock yields

− (1− τrd − τ) + (1− τrd − τ)β(1 − γ) + β
∂Ez [Gc(K

′

i, z
′

i)]

∂S′

i

= 0. (A.1)

The impact of R&D spending on the expected value of the firm in the next period can be clarified

by substituting the expression for p(ji) given in Equation (4) into the expectation for Ez[Gc(K
′

i, z
′

i)]

given in Equation (10):

Ez[Gc(K
′

i, z
′

i)] = Ez[Gc(K
′

i, z
′

i)|ji = 1](1− exp(−a
S′

i

Kθ
i

)) +Ez[Gc(K
′

i, z
′

i)|ji = 0] exp(−a
S′

i

Kθ
i

). (A.2)

Recall that the R&D stock has no effect on the conditional expectation of Gc(K
′

i, z
′

i) given ji. The

derivative of the above expression with respect to S′

i yields

∂Ez[Gc(K
′

i, z
′

i)]

∂S′

i

=
a

Kθ
i

exp(−a
S′

i

Kθ
i

)
(

Ez[Gc(K
′

i, z
′

i)|ji = 1]− Ez[Gc(K
′

i, z
′

i)|ji = 0]
)

. (A.3)

Substituting the above expression into the first-order condition given in (A.1) yields the optimal

policy function for the firm’s R&D stock,

(1− τrd − τ)(1− β(1− γ)) = β
a

Kθ
i

exp(−a
S̃′

i

Kθ
i

)
(

Ez[Gc(K
′

i, z
′

i)|ji = 1]− Ez[Gc(K
′

i, z
′

i)|ji = 0]
)

,

S̃′

i

Kθ
i

=
1

a

[

log(a)− log ((1− τrd − τ)(1 − β(1− γ))) + log

(

β(Ez [Gc(K
′

i, z
′

i)|ji = 1]− Ez[Gc(K
′

i, z
′

i)|ji = 0])

Kθ
i

)]

.

Some algebra reveals that the second-order condition with respect to S′

i is negative, ensuring that

the first-order conditions yield the optimal policy in the interior region.
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B Simulated method of moments

The indirect inference method of Gourieroux, Monfort, and Renault (1993) obtains parameter

estimates by matching a set of selected moments from the data to those obtained by simulation.

Denote the true values of the structural parameters by Ψ∗. The matched moments can be written

as a solution to a minimization problem Q(Y,M), where Y denotes the data and M the moments

to be matched. The data moments are then given by

M̂ = argmin
M

Q(YN ,M), (B.1)

where YN denotes a data matrix withN observations. The corresponding moments for the simulated

data set with parameter vector Ψ and n = N × S observations are given by

m̂(Ψ) = argmin
M

Q(Yn,M). (B.2)

The study picks S = 8, which is within the recommended range.

The structural parameters are then obtained by minimizing a quadratic form of the distance

between the data and simulated moments.

Ψ̂ = argmin
Ψ

N
[

M̂ − m̂(Ψ)
]

′

Ŵ
[

M̂ − m̂(Ψ)
]

, (B.3)

where Ŵ denotes a positive definite weighting matrix. The value of the above function at the

minimum provides a goodness-of-fit measure. The optimal weighting matrix is given by

Ŵ =
[

Nvar(M̂)
]

−1

. (B.4)

The above covariance matrix is calculated with the actual data set using the influence function

method of Erickson and Whited (2000). The estimator is asymptotically normal for fixed S with

covariance matrix given by

√
N(Ψ̂−Ψ∗) ∼ N(0,Σ) (B.5)

Σ = (1 +
1

S
)

[

∂2Q

∂Ψ∂M ′

(

∂Q

∂M

∂Q

∂M

′
)

−1
∂2Q

∂M∂Ψ′

]

−1

.

35



While ∂Q
∂M

can be evaluated analytically, numerical methods are required to obtain ∂2Q
∂Ψ∂M

. Both

partial derivatives are computed using simulated data evaluated at the data moments.

C Numerical solution

The simulations require a numerical solution of the value function for R&D firms. The capital

grid has 201 points, and the profitability grid has 21 points. The capital grid is centered around

an approximation of the median size of the firm, given the parameters. Simulations that result

in steady-state firm sizes near the boundaries of the grid are discarded in the estimation. The

profit grid is formed using the quadrature method of Tauchen and Hussey (1991), with a mean

value obtained by guessing the success rate. The endogenous jumps in z from an innovation are

handled by interpolating firm value over two more grids constructed using the transition equation

for profitability conditional on whether the firm innovates. The expected value of the firm is

obtained using the law of iterated expectations.

The simulated sample is generated using the value and policy functions for R&D firms. The law

of motion for profitability is generated directly using the transition equations. The firm’s decisions

are obtained using linear interpolation of the policy functions. The simulation is run for 100 years,

with the initial 50 discarded as a burn-in sample. The value of the quadratic form of the distance

between the data moments and simulated moments is computed for each simulation. The program

searches for the parameters that minimize this distance using the simulated annealing algorithm.

Each estimation involved evaluating more than 50,000 candidate parameter sets and took one to

two weeks of computing time.

The estimation of the model with multiple jumps per period follows a similar procedure. How-

ever, it is no longer possible to solve for the optimal R&D stock explicitly. Instead, the optimal

R&D stock is solved for using a grid search method, with 301 grid points for the optimal R&D

stock.

D Industry classification

The selected industry groups are constructed based on four-digit SIC codes. The list of SIC codes

included in each industry category is as follows:

• Business services: 2750–2759, 3993, 4220–4229, 7218, 7300, 7310–7342, 7349–7353, 7359–

7369, 7374, 7376–7385, 7389–7394, 7396–7397, 7399, 7519, 8700–8713, 8720–8721, 8730–8734,
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8740–8748, 8910–8911, 8920–8999

• Chips: 3622, 3661–3666, 3669–3679, 3810, 3812

• Hardware: 3570–3579, 3680–3689, 3695

• Medical equipment: 3693, 3811, 3820–3827, 3829–3851

• Pharmaceuticals: 2830, 2831, 2833–2836

• Software: 7370–7373, 7375.
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